Coloration and the Genetics of Adaptation
نویسنده
چکیده
H ow do organisms adapt to new environments? The popular conception of the adaptive process generally runs like this: A mutation arises that leads to an improved phenotype under novel environmental conditions (for example, a beak modifi cation suited to exploiting an untapped food source). Because of the enhanced reproductive success of individuals carrying the mutant allele (or gene variant), the frequency of the mutant allele increases. The mutant allele eventually becomes fi xed in the population—that is, every member of the population has two copies of the allele—and the population has increased its fi tness. The whole process can then repeat itself when the environment changes again. This is the simplest possible model of adaptation, and is enshrined in well-known examples such as the evolution of melanism in the peppered moth and of insecticide resistance in mosquitoes. However, it has long been known that there are many potential complications to this tidy scenario involving a single mutant allele at a single genetic locus, and that the situation is frequently more complex in the real world. For example, more than one locus may be involved, mutant alleles may have effects on more than one aspect of the phenotype (a phenomenon known as pleiotropy), and the effects of alleles on the phenotype may be dependent on the environment (genotype × environment interactions). The timing of the occurrence of a mutation in relation to an environmental change in which the mutation is favored—that is, whether the benefi cial mutation arose de novo in the new environment or was part of the standing genetic variation—also turns out to be critically important. Recent theoretical [1] and empirical work [2–4] has greatly increased our understanding of the adaptive process, but there are many fundamental questions remaining. In particular, we have little knowledge of the relative importance of different factors in actual cases of adaptation, and there are many details of the molecular basis of adaptation that are poorly understood. If two or more loci are involved in adaptation to a new environment, then this leads to the possibility that the phenotypic effects of the two loci are not additive, that is, they are not independent of one another. For example, the effect on the phenotype of the presence of allele A rather than allele B at one locus may depend on whether allele X or allele Y are present at a second locus. Such epistatic …
منابع مشابه
Drought adaptations in wild barley (Hordeum spontaneum) grown in Iran
Wild barley contains a wide genetic diversity and therefore is adaptable to all kinds of harsh environments. The aim of this research was to determine the extent of drought stress adaptation within Hordeum spontaneum L. genotypes from different climates of Iran. From the primary population of 193 genotypes, a core set consisting of 18 genotypes, were selected based on the highest squared Euclid...
متن کاملP-128: Optimization of Human LH Gene Expression by Codon Usage Adaptation in CHO Cell Line
a:4:{s:10:"Background";s:897:"Human luteinizing hormone (hLH) belongs to glycoprotein hormones which is composed of two non-covalently linked subunit, α and β. The α-subunit is similar in all glycoprotein hormones, whereas the β-subunit is conferring the hormonal specificity. This hormone has important roles in the growth and maturity of sexual organs and secondary sexual characteristics and st...
متن کاملOptical characteristics and mineral chemistry of colored fluorites from the mines of Mazandaran Province, and causes of their coloration
In order to understand the cause of coloration of fluorites, following experiments (UV-spectroscopy, irradiation by gamma ray and thermal bleaching) carried out on the colored and colorless fluorites from the mines of Mazandaran Province. All colored and colorless fluorites have absorption band in UV part of electromagnetic waves but deep-violet and brown fluorites have an absorption band in vi...
متن کاملCodon bias patterns in photosynthetic genes of halophytic grass Aeluropus littoralis
Codon bias refers to the differences in the frequency of occurrence of synonymous codons in coding DNA. Pattern of codon and optimum codon utilization is significantly different between the lives. This difference is due to the long term function of natural selection and evolution process. Genetics drift, mutation and regulation of gene expression are the main reasons for codon bias. In this stu...
متن کاملConvergent evolution and divergent selection: lizards at the White Sands ecotone.
Ecological transition zones, where organismal phenotypes result from a delicate balance between selection and migration, highlight the interplay of local adaptation and gene flow. Here, I study the response of an entire species assemblage to natural selection across a common ecotone. Three lizard species, distributed along a dramatic environmental gradient in substrate color, display convergent...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- PLoS Biology
دوره 5 شماره
صفحات -
تاریخ انتشار 2007